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The ability to calculate precise likelihood ratios is fundamental to science, from Quantum

Information Theory through to Quantum State Estimation. However, there is no assumption-
free statistical methodology to achieve this. For instance, in the absence of data relating to

covariate overlap, the widely used Bayes' theorem either defaults to the marginal probability

driven \naive Bayes' classi¯er", or requires the use of compensatory expectation-maximization

techniques. This paper takes an information-theoretic approach in developing a new statistical
formula for the calculation of likelihood ratios based on the principles of quantum entanglement,

and demonstrates that Bayes' theorem is a special case of a more general quantum mechanical

expression.
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1. Introduction

In recent years, Bayesian statistical research has often been epistemologically driven,

guided by de Finetti's famous quote that \probability does not exist".1 For example,

the \quantum Bayesian" methodology of Caves, Fuchs and Schack has applied

de Finetti's ideas to Bayes' theorem for use in quantum mechanics.2 In doing so,
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Caves et al. have argued that statistical systems are best interpreted by methods in

which the Bayesian likelihood ratio is seen to be both external to the system and

subjectively imposed on it by the observer.3 However, the Caves et al. approach is

problematic. At a human scale, for instance, an observer's belief as to the chances of a

fair coin landing either \heads" or \tails" has no known e®ect. Indeed, for all prac-

tical purposes, the \heads:tails" likelihood ratio of 0.5:0.5 is only meaningful when

considered as a property of the coin's own internal statistical system rather than as

some ephemeral and arbitrary qualia.

Yet, to date, the axiomatic di±culties associated with Bayes' theorem, notably its

reliance upon the use of marginal probabilities in the absence of structural statistical

information (e.g. estimates of covariate overlap), as well as the assumed conditional

independence of data, have largely been approached from a \mend and make do"

standpoint. For instance, the \maximum likelihood" approach of Dempster, Laird

and Rubin calculates iteratively derived measures of covariate overlap which not only

lack a sense of natural authenticity, but also introduce fundamental assumptions into

the statistical analysis.4

Instead, this paper adopts a di®erent approach to the analysis of statistical

systems. By using quantum mechanical mathematical spaces, it is demonstrated

that the creation of isomorphic representations of classical data-sets as entangled

systems allows for a natural, albeit nontrivial, calculation of likelihood ratios. It is

expected that this technique will ¯nd applications within the ¯elds of quantum state

estimation, and quantum information theory.

2. The Limits of Bayes' Theorem

Bayes' theorem is used to calculate the conditional probability of a statement, or

hypothesis, being true given that other information is also true. It is usually written as

P ðHijDÞ ¼ P ðHiÞP ðDjHiÞP
j P ðHjÞP ðDjHjÞ

: ð1Þ

Here,P ðHijDÞ is the conditional probability of hypothesisHi being true given that the

information D is true; P ðDjHiÞ is the conditional probability of D being true if Hi is

true; and
P

jP ðHjÞP ðDjHjÞ is the sum of the probabilities of all hypotheses multiplied

by the conditional probability of D being true for each hypothesis.5

Particle α (H1) Particle β (H2)

Number of particles (n) 10 10

Proportion spin ↑ (D) 0.8 0.7

Proportion spin ↓ (D̄) 0.2 0.3

ð2Þ

R. L. Bond, Y.-H. He & T. C. Ormerod

1850002-2



To exemplify using the contingency information in (2), if one wishes to calculate

the nature of a randomly selected particle from a set of 20, given that it has spin ",
then using Bayes' theorem it is trivial to calculate that particle � is the most likely

type with a likelihood ratio of approximately 0.53:0.47,

PðH1jDÞ ¼ 0:5� 0:8

ð0:5� 0:8Þ þ ð0:5� 0:7Þ ¼
8

15
� 0:533;

PðH2jDÞ ¼ 1� PðH1jDÞ ¼ 7

15
� 0:467;

ð3Þ

where P ðHiÞ ¼ 10=ð10þ 10Þ ¼ 0:5 for both i ¼ 1; 2.

However, di±culties arise in the use of Bayes' theorem for the calculation of

likelihood ratios where there are multiple nonexclusive data sets. For instance, if the

information in (2) is expanded to include data about particle charge (4) then the

precise covariate overlap (i.e. D1 \D2) for each particle becomes an unknown.

Particle α (H1) Particle β (H2)

Number of particles (n) 10 10

Proportion spin ↑ (D1) 0.8 0.7

Proportion charge + (D2) 0.6 0.5

ð4Þ

All that may be shown is that, for each particle, the occurrence of both features

forms a range described by (5), where nðHiÞ is the total number of exemplars i,

nðD1jHiÞ is the total number of i with spin ", and nðD2jHiÞ is the total number of i

with a positive charge,

nðD1 \D2jHiÞ

2

½nðD1jHiÞ þ nðD2jHiÞ � nðHiÞ; . . . ;minðnðD1jHiÞ;nðD2jHiÞÞ�
if nðD1jHiÞ þ nðD2jHiÞ > nðHiÞ; or

½0; . . . ;minðnðD1jHiÞ;nðD2jHiÞÞ�
if nðD1jHiÞ þ nðD2jHiÞ � nðHiÞ:

8>>>><
>>>>:

ð5Þ

Speci¯cally for (4) these ranges equate to

nðD1 \D2jH1Þ 2 f4; 5; 6g;
nðD1 \D2jH2Þ 2 f2; 3; 4; 5g: ð6Þ

The simplest approach to resolving this problem is to naively ignore any intersection,

or co-dependence, of the data and to directly multiply the marginal probabilities.

Hence, given (4), the likelihood of particle � having the greatest occurrence of both

spin " and a positive charge would be calculated as

P ðH1jD1 \D2Þ ¼
0:5� 0:8� 0:6

ð0:5� 0:8� 0:6Þ þ ð0:5� 0:7� 0:5Þ ;

� 0:578: ð7Þ
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Yet, because the data intersect, this probability value is only one of a number which

may be reasonably calculated. Alternatives include calculating a likelihood ratio

using the mean value � of the frequency ranges for each hypothesis

Pð�½nðD1 \D2jH1Þ�Þ ¼
1

10
� 1

3
ð4þ 5þ 6Þ ¼ 0:5;

Pð�½nðD1 \D2jH2Þ�Þ ¼
1

10
� 1

4
ð2þ 3þ 4þ 5Þ ¼ 0:35 ð8Þ

) P ðH1j�D1 \D2Þ � 0:588;

and taking the mean value of the probability range derived from the frequency range

minP ðH1jD1 \D2Þ ¼
4

4þ 5
;

maxP ðH1jD1 \D2Þ ¼
6

6þ 2

) �½P ðH1jD1 \D2Þ� � 0:597:

ð9Þ

Given this multiplicity of probability values, it would seem that none of these

methods may lay claim to normativity. This problem of covariate overlap has, of

course, been previously addressed within statistical literature. For instance, the

\maximum likelihood" approach of Dempster, Laird and Rubin has demonstrated

how an \expectation-maximization" algorithm may be used to derive appropriate

covariate overlap measures.4 Indeed, the mathematical e±cacy of this technique has

been con¯rmed by Wu.6 However, it is di±cult to see how such an iterative meth-

odology can be employed without introducing axiomatic assumptions. Further, since

any assumptions, irrespective of how benign they may appear, have the potential to

skew results, what is required is an approach in which covariate overlaps can be

automatically, and directly, calculated from contingency data.

3. A Quantum Mechanical Proof of Bayes' Theorem
for Independent Data

Previously unconsidered, the quantum mechanical von Neumann axioms would seem

to o®er the most promise in this regard, since the re-conceptualization of covariate

data as a quantum entangled system allows for statistical analysis with few, nonar-

bitrary assumptions. Unfortunately, there are many conceptual di±culties that can

arise here. For instance, a Dirac notation representation of (4) as a standard quantum

superposition is

j�i ¼ 1ffiffiffiffiffi
N

p �

ffiffiffi
1

3

r
j4iH1 þ

ffiffiffi
1

3

r
j5iH1 þ

ffiffiffi
1

3

r
j6iH1

 !"

þ �

ffiffiffi
1

4

r
j2iH2 þ

ffiffiffi
1

4

r
j3iH2 þ

ffiffiffi
1

4

r
j4iH2 þ

ffiffiffi
1

4

r
j5iH2

 !#
: ð10Þ
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In this example, (10) cannot be solved since the possible values of D1 \D2 for each

hypothesis (6) have been described as equal chance outcomes within a general su-

perposition ofH1 andH2, with the unknown coe±cients � and � assuming the role of

the classical Bayesian likelihood ratio.

The development of an alternative quantum mechanical description necessitates a

return to the simplest form of Bayes' theorem using the case of exclusive populations

Hi and data sets D, �D, such as given in (2). Here, the overall probability of H1 may

be simply calculated as

P ðH1Þ ¼
nðH1Þ

nðH1Þ þ nðH2Þ
: ð11Þ

The a priori uncertainty in (2) may be expressed by constructing a wave function in

which the four data points are encoded as a linear superposition

j�i ¼ �1;1jH1 �Di þ �1;2jH1 � �Di þ �2;1jH2 �Di þ �2;2jH2 � �Di: ð12Þ

Since there is no overlap between either D and �D or the populations H1 andH2, each

datum automatically forms an eigenstate basis with the orthonormal conditions

hH1 �DjH1 �Di ¼ hH1 � �DjH1 � �Di ¼ 1

hH2 �DjH2 �Di ¼ hH2 � �DjH2 � �Di ¼ 1

all other bra�kets ¼ 0; ð13Þ
where the normalization of the wave function demands that

h�j�i ¼ 1; ð14Þ
so that the sum of the modulus squares of the coe±cients �i;j gives a total probability

of 1

j�1;1j2 þ j�1;2j2 þ j�2;1j2 þ j�2;2j2 ¼ 1: ð15Þ
For simplicity, let

x1 ¼ P ðDjH1Þ; y1 ¼ Pð �DjH1Þ;
x2 ¼ P ðDjH2Þ; y2 ¼ Pð �DjH2Þ;
X1 ¼ P ðH1Þ; X2 ¼ P ðH2Þ:

ð16Þ

If the coe±cients �i;j from (12) are set as required by (2), it follows that

j�1;1j2 ¼ x1; j�1;2j2 ¼ y1; j�2;1j2 ¼ x2; j�2;2j2 ¼ y2; ð17Þ
so that the normalized wave function j�i is described by

j�i ¼ 1ffiffiffiffiffi
N

p ð ffiffiffiffiffi
x1

p jH1 �Di þ ffiffiffiffiffi
y1

p jH1 � �Di þ ffiffiffiffiffi
x2

p jH2 �Di þ ffiffiffiffiffi
y2

p jH2 � �DiÞ; ð18Þ

for some normalization constant N.
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The orthonormality condition (14) implies that

N ¼ x1 þ y1 þ x2 þ y2 ¼ X1 þX2; ð19Þ
thereby giving the full wave function description

j�i ¼
ffiffiffiffiffi
x1

p jH1 �Di þ ffiffiffiffiffi
y1

p jH1 � �Di þ ffiffiffiffiffi
x2

p jH2 �Di þ ffiffiffiffiffi
y2

p jH2 � �Diffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1 þX2

p : ð20Þ

If the value of PðH1jDÞ is to be calculated, i.e. the property D is observed, then the

normalized wave function (12) necessarily collapses to

j� 0i ¼ �1jH1 �D1i þ �2jH2 �D1i; ð21Þ
where the coe±cients �1;2 may be determined by projecting j�i on to the two terms

in j� 0i using (13), giving

�1 ¼ h� 0jH1 �Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1

X1 þX2

r
;

�2 ¼ h� 0jH2 �Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2

X1 þX2

r
:

ð22Þ

Normalizing (21) with the coe±cient N 0

j� 0i ¼ 1ffiffiffiffiffiffi
N 0p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

X1 þX2

r
jH1 �Di þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

X1 þX2

r
jH2 �Di

� �
; ð23Þ

and using the normalization condition (14), implies that

1 ¼ h� 0j� 0i ¼ 1

N 0
x1

X1 þX2

þ x2

X1 þX2

� �

! N 0 ¼ x1 þ x2

X1 þX2

: ð24Þ

Thus, after collapse, the properly normalized wave function (23) becomes

j� 0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1

x1 þ x2

r
jH1 �Di þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

x1 þ x2

r
jH2 �Di; ð25Þ

which means that the probability of observing jH1 �Di is

P ðjH1 �DiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1

x1 þ x2

r� �
2

¼ �2
1

�2
1 þ �2

2

¼ x1

x1 þ x2

: ð26Þ

This is entirely consistent with Bayes' theorem and demonstrates its derivation using

quantum mechanical axioms.

4. Quantum Likelihood Ratios for Co-Dependent Data

Having established the principle of using a quantum mechanical approach for the

calculation of simple likelihood ratios with mutually exclusive data (2), it is now
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possible to consider the general case of n hypotheses andm data (27), where the data

are co-dependent, or intersect.

H1 H2 · · · Hn

D1 x1,1 x1,2 · · · x1,n

D2 x2,1 x2,2 · · · x2,n

...
...

...

Dm xm,1 xm,2 · · · xm,n

ð27Þ

Here, the contingency table in (27) has been indexed using

xi;�; � ¼ 1; 2; . . . ;n; i ¼ 1; 2; . . . ;m: ð28Þ
While the general wave function remains the same as before, the overlapping data

create nonorthonormal inner products which can be naturally de¯ned as

hH� �DijH� �Dji ¼ c�ij���; c�ij ¼ c�ji 2 R; c�ii ¼ 1: ð29Þ
Assuming, for simplicity, that the overlaps c�ij are real, then there is a symmetry in

that c�ij ¼ c�ji for each �. Further, for each � and i, the state is normalized i.e. c�ii ¼ 1.

The given independence of the hypotheses H� also enforces the Kronecker delta

function, ���.

The Hilbert space V spanned by the kets jH� �Dii is mn-dimensional and, be-

cause of the independence of H�, naturally decomposes into the direct sum (30) with

respect to the inner product, thereby demonstrating that the nonorthonormal con-

ditions are the direct sum of m vector spaces V �:

V ¼ SpanðfjH� �DiigÞ ¼
Mn

�¼1

V �; dimV � ¼ m: ð30Þ

Since the inner products are nonorthonormal, each V � must be individually ortho-

normalised. Given that V splits into a direct sum, this may be achieved for each

subspace V � by applying the Gram–Schmidt algorithm to fjH� �Diig of V . Con-

sequently, the orthonormal basis may be de¯ned as

jK �
i i ¼

Xn
k¼1

A�
i;kjH� �Dki; hK �

i jK �
j i ¼ �ij; ð31Þ

for each � ¼ 1; 2; . . . ;n with m�m matrices A�
i;k, for each �.

Substituting the inner products (29) gives

Xm
k;k 0¼1

A�
ikA

�
jk 0c�kk 0 ¼ �ij 8� ¼ 1; 2; . . . ;n: ð32Þ
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The wavefunction may now be written as a linear combination of the orthonorma-

lized kets jK �
i i with the coe±cients b�i , and may be expanded into the jH� �Dii

basis using (31), i.e.

j�i ¼
X
�;i

b�i jK �
i i ¼

X
�;i;k

b�i A
�
ikjH� �Dki: ð33Þ

As with (17) from earlier, the coe±cients in (33) should be set as required by the

contingency table X
i

b�i A
�
i;k ¼

ffiffiffiffiffiffiffi
xk�

p
; ð34Þ

where, to solve for the b-coe±cients, (32) may be used to invertX
k;k 0

X
i

b�i A
�
ikAjk 0 c�kk 0 ¼

X
k;k 0

ffiffiffiffiffiffiffi
xk�

p
A�

jk 0c�k 0k; ð35Þ

giving

b�j ¼
X
k;k 0

ffiffiffiffiffiffiffi
xk�

p
A�

jk 0c�kk 0 : ð36Þ

Having relabeled the indices as necessary, a back-substitution of (34) into the ex-

pansion (33) gives

j�i ¼
X
�;i;k

b�i A
�
i;kjH� �Dki ¼

X
�;k

ffiffiffiffiffiffiffi
xk�

p jH� �Dki; ð37Þ

which is the same as having simply assigned each ket's coe±cient to the square root of

its associated entry in the contingency table.

The normalization factor for j�i is simply 1=
ffiffiffiffiffi
N

p
, where N is the sum of the

squares of the coe±cients b of the orthonormalized bases jK �
i i,

N ¼
X
i;�

ðb�i Þ2 ¼
X
i;�

b�i
X
k;k 0

ffiffiffiffiffiffiffi
xk�

p
A�

k 0;ic
�
kk 0

 !
¼
X
k;k 0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk�xk 0�

p
c�kk 0 : ð38Þ

Thus, the ¯nal normalized wave function is

j�i ¼
P

�;k
ffiffiffiffiffiffiffi
xk�

p jH� �DkiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi�xj�

p
c�ij

q ; ð39Þ

where � is summed from 1 to n, and i; j are summed from 1 to m. Note that, in the

denominator, the diagonal term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi�xj�

p
c�ij, which occurs whenever i ¼ j, simpli¯es

to xi� since c�ii ¼ 1 for all �.

From (39) it follows that, exactly in parallel to the nonintersecting case, if all

properties Di are observed simultaneously, the probability of any hypothesis H�, for

a ¯xed �, is

PðH�jD1 \D2 � � � \DmÞ ¼
P

i ðb�i Þ2P
i;� ðb�i Þ2

¼
P

i;j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi�xj�

p
c�ijP

i;j;�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
xi�xj�

p
c�ij

: ð40Þ

R. L. Bond, Y.-H. He & T. C. Ormerod

1850002-8



In the case of noneven populations for each hypothesis (i.e. noneven priors), the

calculated probabilities should be appropriately weighted.

5. Example Solution

Returning to the problem presented in the contingency table (4), it is now possible to

calculate the precise probability for a randomly selected particle with the properties

of \spin " " and \charge þ" being particle � (H1). For this 2� 2 matrix, recalling

from (29) that c�ii ¼ 1 and c�ij ¼ c�ji, the general expression (40) may be written as

P ðH1jD1 \D2Þ ¼
P2

i;j¼1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi;1xj;1

p
c1ijP2

i;j¼1

P2
�¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi�xj�

p
c�ij

¼
ffiffiffiffiffiffiffiffi
x2
1;1

q
c11;1 þ

ffiffiffiffiffiffiffiffi
x2
2;1

q
c12;2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1;1x2;1
p

c11;2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2;1x1;1

p
c12;1P2

�¼1

ffiffiffiffiffiffiffiffiffi
x 2
1;�

q
c11;1 þ

ffiffiffiffiffiffiffiffiffi
x2
2;�

q
c12;2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1;�x2;�
p

c11;2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2;�x1;�

p
c12;1

¼ x1 þ y1 þ 2c1
ffiffiffiffiffiffiffiffiffiffi
x1y1

p
x1 þ x2 þ y1 þ y2 þ 2c1

ffiffiffiffiffiffiffiffiffiffi
x1y1

p þ 2c2
ffiffiffiffiffiffiffiffiffiffi
x2y2

p ; ð41Þ

where, adhering to the earlier notation (16),

x1 ¼ x1;1 ¼ P ðD1jH1Þ; y1 ¼ x2;1 ¼ PðD2jH1Þ;
x2 ¼ x1;2 ¼ P ðD1jH2Þ; y2 ¼ x2;2 ¼ PðD2jH2Þ;
X1 ¼ PðH1Þ; X2 ¼ PðH2Þ;

ð42Þ

and, for brevity, c1 :¼ c11;2, c2 :¼ c21;2. For simplicity, P ðHijD1 \D2Þ will henceforth
be denoted as Pi. Implementing (41) is dependent upon deriving solutions for the yet

unknown expressions ci, i ¼ 1; 2 which govern the extent of the intersection in (29).

This can only be achieved by imposing reasonable constraints upon ci which have

been inferred from expected behavior and known outcomes, i.e. through the use of

boundary values and symmetries. Speci¯cally, these constraints are:

Data dependence. The expressions ci must, in some way, be dependent upon the data

given in the contingency table, i.e.

c1 ¼ c1ðx1; y1;x2; y2;X1;X2Þ;
c2 ¼ c2ðx1; y1;x2; y2;X1;X2Þ:

ð43Þ

Probability. The calculated values for Pi must fall between 0 and 1. Since xi and yi are

positive, it su±ces to take

�1 < ciðx1; y1;x2; y2Þ < 1: ð44Þ
Complementarity. The law of total probability dictates that

P1 þ P2 ¼ 1; ð45Þ
which can easily be seen to hold.

A quantum framework for likelihood ratios
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Symmetry. The exchanging of rows within the contingency tables should not a®ect

the calculation of Pi. In other words, for each i ¼ 1; 2, Pi is invariant under xi $ yi.

This constraint implies that

ciðx1; y1;x2; y2Þ ¼ ciðy1;x1; y2;x2Þ: ð46Þ
Equally, if the columns are exchanged then Pi must map to each other, i.e. for each

i ¼ 1; 2 then P1 $ P2 under x1 $ x2; y1 $ y2 which gives the further constraint that

c1ðx1; y1;x2; y2Þ ¼ c2ðx2; y2;x1; y1Þ: ð47Þ
Known values. There are a number of contingency table structures which give rise to

a known probability, i.e.

H1 H2

D1 1 1

D2 m n

→ P1 =
m

m + n

H1 H2

D1 m n

D2 1 1

→ P1 =
m

m + n

H1 H2

D1 n m

D2 m n

→ P1 =
1
2

H1 H2

D1 n n

D2 m m

→ P1 =
1
2

H1 H2

D1 m m

D2 m m

→ P1 =
1
2

,

ð48Þ

where m;n are positively valued probabilities. For such contingency tables the cor-

rect probabilities should always be returned by ci. Applying this principle to (41)

gives the constraints

m

mþ n
¼ 2c1ðm; 1;n; 1Þ ffiffiffiffiffi

m
p þmþ 1

2c1ðm; 1;n; 1Þ ffiffiffiffiffi
m

p þ 2c2ðm; 1;n; 1Þ ffiffiffi
n

p þmþ nþ 2
; ð49Þ
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1

2
¼ 2c1ðn;m;m;nÞ ffiffiffiffiffi

m
p ffiffiffi

n
p þmþ n

2c1ðn;m;m;nÞ ffiffiffiffiffi
m

p ffiffiffi
n

p þ 2c2ðn;m;m;nÞ ffiffiffiffiffi
m

p ffiffiffi
n

p þ 2mþ 2n
; ð50Þ

1

2
¼ 2c1ðn;m;n;mÞ ffiffiffiffiffi

m
p ffiffiffi

n
p þmþ n

2c1ðn;m;n;mÞ ffiffiffiffiffi
m

p ffiffiffi
n

p þ 2c2ðn;m;n;mÞ ffiffiffiffiffi
m

p ffiffiffi
n

p þ 2mþ 2n
: ð51Þ

Nonhomogeneity. Bayes' theorem returns the same probability for any linearly scaled

contingency tables, e.g.

x1 ! 1:0; y1 ! 1:0;x2 ! 1:0; y2 ! 0:50 ) P1 � 0:667; ð52Þ
x1 ! 0:5; y1 ! 0:5;x2 ! 0:5; y2 ! 0:25 ) P1 � 0:667: ð53Þ

While homogeneity may be justi¯ed for conditionally independent data, this is not

the case for intersecting, co-dependent data since the act of scaling changes the

nature of the intersections and the relationship between them. This may be easily

demonstrated by taking the possible value ranges for (52) and (53), calculated

using (5), which are

Eq: ð52Þ ) ðD1 \D2ÞjH1 ¼ f1g;
ðD1 \D2ÞjH2 ¼ f0:5g;

Eq: ð53Þ ) ðD1 \D2ÞjH1 ¼ f0:0 . . . 0:5g;
ðD1 \D2ÞjH2 ¼ f0:0 . . . 0:25g:

ð54Þ

The e®ect of scaling has not only introduced uncertainty where previously there had

been none, but has also introduced the possibility of 0 as a valid answer for both

hypotheses. Further, the spatial distance between the hypotheses has also decreased.

For these reasons, it would seem unreasonable to assert that (52) and (53) share the

same likelihood ratio.

Using these principles and constraints, it becomes possible to solve ci. From the

principle of symmetry, it follows that

c1ðn;m;m;nÞ ¼ c2ðm;n;n;mÞ ¼ c2ðn;m;m;nÞ;
c1ðn;m;n;mÞ ¼ c2ðn;m;n;mÞ ¼ c2ðn;m;n;mÞ; ð55Þ

and that the equalities (50), (51) for Pi ¼ 0:5 automatically hold. Further, (49) solves

to give

c2ðm; 1;n; 1Þ ¼ 2
ffiffiffiffiffi
m

p
nc1ðm; 1;n; 1Þ �mþ n

2m
ffiffiffi
n

p ; ð56Þ

which, because c1ðn; 1;m; 1Þ ¼ c2ðm; 1;n; 1Þ, ¯nally gives

c1ðn; 1;m; 1Þ ¼ 2
ffiffiffiffiffi
m

p
nc1ðm; 1;n; 1Þ �mþ n

2m
ffiffiffi
n

p : ð57Þ
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Substituting gðm;nÞ :¼ ffiffiffi
n

p
c1ðm; 1;n; 1Þ transforms (57) into an anti-symmetric

bivariate functional equation in m;n,

gðm;nÞ � gðn;mÞ ¼ m

2
ffiffiffiffiffiffiffiffi
mn

p � n

2
ffiffiffiffiffiffiffiffi
mn

p ; ð58Þ

whose solution is gðm;nÞ ¼ m
2
ffiffiffiffiffi
mn

p .

This gives a ¯nal solution for the coe±cients c1;2 of

c1ðx1; y1;x2; y2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
x1y1

p
2x2y2

;

c2ðx1; y1;x2; y2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
x2y2

p
2x1y1

:

ð59Þ

Thus, substituting (59) into (41) gives the likelihood ratio expression of,

P ðH1jD1 \D2Þ ¼
x1 y1
x2 y2

þ x1 þ y1
x1 y1
x2 y2

þ x1 þ y1 þ x2 y2
x1 y1

þ x2 þ y2
: ð60Þ

Given that the population sizes of H1 and H2 are the same, no weighting needs to

take place. Hence, the value of P ðH1jD1 \D2Þ for (4) may now be calculated to be

P ðH1jD1 \D2Þ � 0:5896: ð61Þ

6. Discussion

One of the greatest obstacles in developing any statistical approach is demonstrating

correctness. This formula is no di®erent in that respect. If correctness could be

demonstrated then, a priori, there would be an appropriate existing method which

would negate the need for a new one. All that may be hoped for in any approach is

that it generates appropriate answers when they are known, reasonable answers

for all other cases, and that these answers follow logically from the underlying

mathematics.

However, what is clear is that the limitations of the naive Bayes' classi¯er render

any calculations derived from it open to an unknown margin of error. Given the

importance of accurately deriving likelihood ratios this is troubling. This is especially

true when the statistical tolerance of calculations is marginal.

As a quantum mechanical methodology this result is able to calculate accurate,

iteration free, likelihood ratios which fall beyond the scope of existing statistical

techniques, and o®ers a new theoretical approach within both statistics and physics.

Further, through the addition of a Hamiltonian operator to introduce time-evolution,

it can o®er likelihood ratios for future system states with appropriate updating of the

contingency table. In contrast, Bayes' theorem is unable to distinguish directly be-

tween time-dependent and time-independent systems. This may lead to situations

where the process of contingency table updating results in the same decisions being

made repeatedly with the appearance of an ever increasing degree of certainty.
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Indeed, from (26), it would seem that the naive Bayes' classi¯er is only a special case

of a more complex quantum mechanical framework, and may only be used where the

exclusivity of data is guaranteed.

The introduction of a Hamiltonian operator, and a full quantum dynamical for-

malism, is in progress, and should have profound implications for the physical sci-

ences. Inevitably, such a formalism will require a sensible continuous classical limit.

In other words, the ¯nal expressions for the likelihood ratios should contain a pa-

rameter, in some form of }, which, when going to 0, reproduces a classically known

result. For example, the solutions to (59) could be moderated as

c1ðx1; y1;x2; y2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
x1y1

p
2x2y2

ð1� expð�}ÞÞ;

c2ðx1; y1;x2; y2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
x2y2

p
2x1y1

ð1� expð�}ÞÞ;
ð62Þ

so that in the limit of } ! 0, the intersection parameters, c1 and c2, vanish to return

the formalism to the classical situation of independent data.

7. Conclusion

This paper has demonstrated both theoretically, and practically, that a quantum

mechanical methodology can overcome the axiomatic limitations of classical statis-

tics. In doing so, it challenges the orthodoxy of de Finetti's epistemological approach

to statistics by demonstrating that it is possible to derive \real" likelihood ratios from

information systems without recourse to arbitrary and subjective evaluations.

While further theoretical development work needs to be undertaken, particularly

with regards to the application of these mathematics in other domains, it is hoped

that this article will help advance the debate over the nature and meaning of

statistics within the physical sciences.
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