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Abstract

We introduce a novel Hamiltonian framework for short-horizon foreign exchange (FX)
dynamics that treats statistical moments as position coordinates in a low-dimensional phase
space. The system evolves via physically motivated energy terms rather than curve fitting:
potential energy encodes mean-reversion through Ornstein–Uhlenbeck (OU) springs with
optional cross-couplings, while triangular no-arbitrage constraints act as energy conservation
laws. After standardizing to empirical-σ units, we employ Riemannian Manifold Hamil-
tonian Monte Carlo (RMHMC) to generate predictive distributions and make decisions
at the distribution level using CDF-difference statistics and cost-exceedance gating. This
approach preserves a “physics-first” philosophy, avoids traditional curve fitting, and explicitly
accounts for trading frictions. We demonstrate the theoretical foundations and present the
mathematical framework, establishing a new paradigm that bridges statistical mechanics
and quantitative finance.

Keywords Hamiltonian dynamics; foreign exchange; Ornstein–Uhlenbeck; Riemannian
Manifold HMC; Generalized Hyperbolic distributions; no-arbitrage constraints; standardized

coordinates; cost-aware trading.

1 Introduction

The application of physical principles to financial markets has a rich history, from Bachelier’s
pioneering work on Brownian motion to modern econophysics [3]. However, most approaches
either focus on microscopic order-book mechanics or employ coarse thermodynamic metaphors

without establishing rigorous connections to observable market statistics.
We present a fundamentally different approach: a Hamiltonian framework that operates directly

on the evolution of statistical moments—mean, standard deviation, skewness, and
kurtosis—treating these as position coordinates in a low-dimensional phase space. This choice is

motivated by several considerations: (1) moments capture the essential distributional
characteristics relevant to trading decisions, (2) they provide a natural bridge between raw price

data and theoretical distribution families, and (3) their evolution can be modeled using
well-established physical principles.

Our key contributions are:

1. A rigorous mathematical framework treating financial statistics as dynamical variables in
a Hamiltonian system
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2. A standardization procedure that enables robust comparison between empirical and
theoretical distributions

3. A decision-making protocol based on distributional properties rather than point predictions

4. Integration of no-arbitrage constraints as energy conservation laws

5. A cost-aware gating mechanism that explicitly accounts for trading frictions

The approach deliberately avoids curve fitting and traditional signal calibration, instead relying
on physically motivated evolution equations and distribution-level decision criteria. This

paradigm shift from prediction to mechanistic understanding offers potential advantages in
terms of robustness and theoretical grounding.

2 Related Work and Background

2.1 Econophysics and Hamiltonian Market Models

The intersection of physics and finance has produced numerous insights, from scaling laws in
market volatility to applications of statistical mechanics in price formation [3]. However, most
Hamiltonian analogies in finance operate at either the microscopic level (modeling individual
trades or agent interactions) or employ thermodynamic metaphors without establishing clear

connections to observable market quantities.
Our approach differs by defining a compact, observable state space on return moments and
specifying energy functions directly in this space. This bridges the gap between abstract

physical analogies and practical market modeling.

2.2 Heavy-Tailed Return Modeling

The Generalized Hyperbolic (GH) family and related Lévy processes have become standard
tools for modeling financial returns due to their ability to capture heavy tails, skewness, and
clustering behavior [1, 2, 4]. Traditional approaches fit these distributions to historical data, but

parameter stability remains a persistent challenge.
Our standardization to empirical-σ units represents a novel approach to this problem: rather

than fitting model parameters to match data scaling, we transform both empirical and
theoretical distributions to a common coordinate system. This preserves distributional

comparisons while reducing sensitivity to scale variations.

2.3 Geometric Monte Carlo Methods

Riemannian Manifold Hamiltonian Monte Carlo (RMHMC) [6] extends traditional HMC by
incorporating the geometric structure of parameter spaces. While RMHMC has been applied in
hierarchical modeling and some financial contexts, its use for one-step predictive evolution in
standardized coordinates coupled to distribution-level decisions represents a novel application.

2.4 No-Arbitrage Constraints

Triangular arbitrage constraints in FX markets are well-established [5], typically enforced
through direct price relationships. Our treatment as soft energy penalties within a Hamiltonian
framework provides a natural mechanism for incorporating these constraints while maintaining

the flexibility needed for short-term dynamics.
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3 Mathematical Framework

3.1 State Space Definition

Let {rt} denote a time series of returns computed over a rolling window of N observations (e.g.,
N = 96 fifteen-minute bars). We define the moment state vector:

q(t) =
[
µ(t), σ(t), skew(t), kurt(t)

]⊤
(1)

where each component represents the corresponding sample moment of recent returns.
The conjugate momentum vector captures the rate of change of these statistical properties:

p(t) = q̇(t) ≈ q(t)− q(t−∆)

∆
(2)

where ∆ represents the sampling interval in appropriate time units.

3.2 Hamiltonian Structure

The total energy of the system consists of kinetic and potential components:

H(q, p) = T (p) + V (q) (3)

3.2.1 Kinetic Energy

To ensure numerical stability across different scales, we employ a weighted kinetic energy:

T (p) =
1

2

4∑
d=1

wdp
2
d (4)

wd = (Var[pd] + ε)−1 (5)

where Var[pd] is computed from recent momentum history and ε > 0 is a regularization
parameter.

3.2.2 Potential Energy

The potential energy encodes mean-reversion dynamics and constraint enforcement:

V (q) = Vself(q) + Vbar(q) + Varb(q) (6)

Mean Reversion: Drawing inspiration from Ornstein-Uhlenbeck processes [7], we model mean
reversion as elastic restoring forces:

Vself(q) =
1

2
(q − qeq)⊤K(q − qeq) (7)

K = diag(kµ, kσ, ksk, kku) + ∆ (8)

where qeq represents the equilibrium state (computed from long-term statistics), kd ≈ 1/τd with
τd being characteristic timescales, and ∆ represents optional cross-coupling terms.

Domain Barriers: Physical constraints ensure statistical validity:

Vbar(q) = −cσ log(σ − σmin)− cku log(kurt− 1) (9)

enforcing σ > σmin > 0 and kurt > 1.
No-Arbitrage Constraint: For currency triplets (A,B,C), triangular arbitrage is penalized

through:

Varb =
η

2

∑
△

(
logSAB + logSBC + logSCA

)2
(10)

where SXY denotes exchange rates and η > 0 controls constraint strength.
The full potential is V = Vself + Vbar + Varb.
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Figure 1: Triangular arbitrage constraint as a soft energy penalty. The framework treats
violations of the no-arbitrage condition logSAB + logSBC + logSCA = 0 as contributing to
the system’s potential energy, creating restoring forces that naturally guide the system toward
arbitrage-free states while allowing temporary deviations during market transitions.

3.3 Hamilton’s Equations

System evolution follows the canonical equations:

dq

dt
=

∂H

∂p
= W−1p (11)

dp

dt
= −∂H

∂q
= −∇qV (q) (12)

where W = diag(w1, w2, w3, w4).

4 Standardized Coordinate System

A crucial innovation is the standardization procedure that aligns empirical and theoretical
distributions on a common scale. Let σemp denote the empirical standard deviation of recent

returns. We define the standardized coordinate:

Z =
X

σemp
(13)

For Generalized Hyperbolic distributions with parameters (µ, δ, α, β, λ), the transformation to
Z-space yields:

µZ = µ/σemp (14)

δZ = δ/σemp (15)

αZ = α · σemp (16)

βZ = β · σemp (17)

λZ = λ (18)
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Figure 2: Phase space representation showing potential energy contours in a two-dimensional
slice of the moment state space. The contour lines represent constant energy levels, with the
equilibrium point (marked by ⋆) at the center of the potential well. The current system state
and its momentum vector (arrow) indicate the direction of evolution according to Hamilton’s
equations. The spiral trajectory illustrates how the system orbits around equilibrium while
conserving total energy.

This standardization ensures that empirical and theoretical distributions operate on comparable
scales, facilitating robust distributional comparisons.

5 Predictive Distribution Generation

5.1 Riemannian Manifold HMC

Given current state (qt, pt), we use RMHMC to sample from the predictive distribution at t+ 1.
The Riemannian metric tensor accounts for the curvature of the parameter space:

Gij(q) = −∂2 log π(q)

∂qi∂qj
(19)

where π(q) represents the target distribution.

The RMHMC algorithm generates samples {q(i)t+1}Ni=1 representing possible future states. Each
sample corresponds to a point in the standardized Z-space where distributional comparisons

occur.

5.2 Direction Statistic

For decision making, we compute a direction statistic based on CDF differences. Let Fe and Fh

denote the empirical and Hamiltonian-evolved CDFs respectively, evaluated at a common pivot
point z0 (typically the standardized median):

pdir = 0.5 + (Fe(z0)− Fh(z0)) (20)
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Figure 3: Demonstration of the standardization procedure. Left: Raw-space probability density
functions for empirical market data (blue) and a theoretical Generalized Hyperbolic distribution
(orange) showing significant scale mismatch that complicates direct comparison. Right: The
same distributions after standardization to empirical-σ units, where both curves operate on the
same scale enabling meaningful CDF comparisons and direction statistics. The standardization
preserves distributional shapes while eliminating scale-dependent artifacts.

Values pdir > 0.5 indicate rightward mass shift in the Hamiltonian prediction relative to current
empirical distribution, suggesting potential upward price movement.

5.3 Cost-Aware Magnitude Gating

Trading costs (spreads, fees, slippage) are explicitly incorporated through exceedance
probability calculations. Let craw denote total trading costs in return units. The standardized

cost threshold becomes:

cz =
craw
σemp

(21)

We compute the exceedance probability:

π(cz) = P(|Zt+1| > cz) (22)

Trading occurs only when π(cz) ≥ θ for some threshold θ ∈ [0.6, 0.7], ensuring sufficient
expected movement to overcome trading costs.

6 Theoretical Properties

6.1 Energy Conservation and Stability

Theorem 1 (Energy Conservation). In the absence of dissipation, the Hamiltonian H(q, p) is
conserved along solution trajectories of equations (11)-(12).

Proof. Direct calculation shows dH
dt = ∂H

∂q · dq
dt +

∂H
∂p · dp

dt = 0 using the canonical equations.

Theorem 2 (Domain Invariance). The barrier potential Vbar(q) ensures that finite-energy
trajectories remain within the physically meaningful domain {σ > σmin, kurt > 1}.

Proof. As σ → σ+
min or kurt → 1+, we have Vbar(q) → +∞, making such configurations

energetically inaccessible for finite total energy.
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Figure 4: Cost-aware magnitude gating mechanism. The plot shows the exceedance probability
π(c) = P(|Zt+1| > c) as a function of the standardized cost threshold c. The horizontal dashed line
represents the fixed gating threshold θ. Trading signals are only acted upon when the predicted
probability of exceeding trading costs surpasses this threshold, ensuring that expected price
movements are sufficient to overcome transaction frictions. This approach directly incorporates
trading realities into the decision-making process without requiring separate risk management
overlays.

6.2 Scale Invariance of Direction Statistic

Lemma 1 (Scale Invariance). The direction statistic pdir defined in equation (20) is invariant
under positive rescaling of the underlying returns, provided both empirical and theoretical distri-
butions are standardized consistently.

Proof. Under the transformation X 7→ aX for a > 0, both CDFs Fe and Fh undergo the same
monotonic transformation when evaluated at the correspondingly scaled pivot point, preserving
their difference.

Lemma 2 (Monotonicity of Exceedance). The exceedance probability π(c) = P(|Z| > c) is
non-increasing in c, with π(0) = 1 and limc→∞ π(c) = 0.

Proof. For fixed distribution of Z, the sets {|Z| > c} are nested decreasing in c.

7 Implementation Considerations

7.1 Temporal Adaptation

The system incorporates adaptive time-stepping based on characteristic timescales and energy
levels. The integration step size is adjusted according to:

∆t = min

(
∆tmax,

τchar√
1 +H/Href

)
(23)

7



0 10 20 30 40 50 60
Step

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

t (
da

ys
)

Adaptive step with change limiter

target t
clamped t

Figure 5: Adaptive time-stepping with change limiting. The plot shows the target integration step
size (thin line) and the actual clamped step size (thick line) over a sequence of integration steps.
The change limiter prevents excessive step size variations that could destabilize the numerical
integration, while still allowing adaptation to changing system dynamics. This mechanism
ensures numerical stability while maintaining computational efficiency by taking larger steps
during quiescent periods and smaller steps during rapid evolution phases.

where τchar represents the fastest characteristic timescale and Href is a reference energy scale.

7.2 Momentum Freshness

To account for the decreasing relevance of momentum over time, we introduce a freshness factor:

freshness = exp(−age/τchar) · σ(kinetic fraction) · σ(SNR) (24)

where ”age” tracks time since momentum computation, and the additional factors account for
energy distribution and signal quality.

7.3 Convergence Diagnostics

RMHMC chain convergence is monitored through standard diagnostics including the
Gelman-Rubin R̂ statistic and effective sample size calculations. Multiple independent chains

with different initializations ensure robust sampling.

8 Model Validation and Sanity Checks

The framework includes several internal consistency checks:

1. Normalization: Predictive and empirical densities integrate to 1± 10−3 on the shared
grid
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2. Domain constraints: Statistical validity requirements are maintained throughout evolu-
tion

3. No-arbitrage monitoring: Triangle penalty magnitude flags potential market disloca-
tions

4. Sampler diagnostics: Chain agreement and absence of divergences in RMHMC

9 Discussion and Future Directions

9.1 Advantages of the Hamiltonian Approach

The physics-based framework offers several conceptual and practical advantages:
Theoretical Grounding: Unlike purely statistical models, the Hamiltonian approach provides
a principled framework for understanding parameter evolution based on established physical

laws.
Robustness: By avoiding direct curve fitting and focusing on distributional properties, the

method may be less susceptible to overfitting and regime changes.
Interpretability: The energy formulation provides intuitive understanding of market

dynamics: high kinetic energy indicates rapid statistical change, while potential wells represent
stable regimes.

Extensibility: The framework naturally accommodates additional physics-inspired features
such as cross-asset energy transfer or ensemble forecasting.

9.2 Limitations and Challenges

Dimensionality: The approach trades granularity for robustness by operating on
low-dimensional moment statistics rather than full price trajectories.

Standardization Assumptions: The method assumes local stability of empirical σ for
standardization purposes, which may break down during extreme market events.

Computational Complexity: RMHMC sampling requires careful tuning and may be
computationally intensive for real-time applications.

Parameter Calibration: While avoiding traditional curve fitting, the framework still requires
specification of energy parameters and thresholds.

9.3 Future Research Directions

Several extensions merit investigation:
Multi-Asset Energy Systems: Modeling currency pairs as components of a unified energy

system with cross-pair energy transfer mechanisms.
Non-Equilibrium Thermodynamics: Incorporating dissipation and external driving forces

to model trending markets.
Quantum Extensions: Exploring quantum mechanical analogies for incorporating uncertainty

and measurement effects.
Ensemble Methods: Generating multiple trajectories to quantify forecast uncertainty and

improve decision robustness.

10 Conclusion

We have presented a novel Hamiltonian framework for foreign exchange modeling that treats
statistical moments as dynamical variables evolving according to physically motivated laws. By

standardizing to empirical-σ units and employing distribution-level decision criteria, the
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approach avoids traditional curve fitting while explicitly accounting for trading costs and
no-arbitrage constraints.

The framework represents a paradigmatic shift from prediction-based to mechanism-based
market modeling. Rather than attempting to forecast specific price movements, it focuses on
understanding how distributional properties evolve over time according to conservation laws and

energy principles.
While preliminary, this work establishes theoretical foundations for a new class of

physics-inspired trading systems. The combination of rigorous mathematical structure, practical
implementation considerations, and explicit cost accounting suggests potential for robust

performance across varying market conditions.
Future empirical validation will determine whether this theoretical promise translates to

practical trading advantages. However, the framework’s emphasis on physical principles over
fitted parameters provides reason for optimism regarding its robustness and generalizability.

A Notation Summary

Symbol Meaning

q, p Moment state and conjugate momentum vectors
qeq Equilibrium moment state
K Stiffness matrix for mean reversion
T, V,H Kinetic, potential, and total energy
Z Standardized return coordinate X/σemp

Fe, Fh Empirical and Hamiltonian CDFs
pdir Direction statistic for trading decisions
cz Standardized cost threshold
π(cz) Exceedance probability
θ Cost gating threshold
τchar Characteristic timescale
∆ Cross-coupling matrix
η No-arbitrage penalty strength

Table 1: Key notation used throughout the paper.

B Key Theoretical Results

Lemma 1 (Energy Conservation). In the absence of dissipation, the Hamiltonian H(q, p) is
conserved along solution trajectories of equations (11)-(12).

Lemma 2 (Domain Invariance). The barrier potential Vbar(q) ensures that finite-energy trajec-
tories remain within the physically meaningful domain {σ > σmin, kurt > 1}.

Lemma 3 (Scale Invariance). The direction statistic pdir defined in equation (20) is invariant
under positive rescaling of the underlying returns, provided both empirical and theoretical distri-
butions are standardized consistently.

Lemma 4 (Monotonicity of Exceedance). The exceedance probability π(c) = P(|Z| > c) is
non-increasing in c, with π(0) = 1 and limc→∞ π(c) = 0.
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