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On the Proper Treatment of Normalized Statistical Moments as Coordinates

in Hamiltonian Phase Space
A methodological note for empirical diagnostics

e consider Hamiltonian diagnostics built on the empirical first four moments of a
financial return distribution, using mean, standard deviation, skewness, and kurtosis as
phase-space coordinates. A common (and seductive) implementation scales all
coordinates by recent empirical dispersion to produce a “dimensionless” chart. We show
this “double-normalisation” is inappropriate for already-normalised shape descriptors
(skewness and kurtosis). It induces spurious curvature in the potential energy of an
otherwise linear Hamiltonian, leading to explosive energies in quiet windows. We
formalise the pathology, provide a principled construction that treats dimensional and
dimensionless coordinates differently, and demonstrate empirically that the corrected
model yields stable, interpretable energy partitions that cleanly distinguish trend from
trap regimes. This methodological note addresses a gap at the intersection of
Hamiltonian moment hierarchies (typically applied to raw moments in plasma physics)

and statistical diagnostics (which employ pre-normalized shape descriptors).
Introduction

Hamiltonian ideas have been deployed in statistics and finance both as
computational tools (e.g. Hamiltonian Monte Carlo [1, 2]) and as diagnostic lenses for
complex dynamics. A practical approach builds a low-dimensional phase space from
summary statistics of returns, then interprets the energy partition between kinetic (K)
and potential (V') as signalling flow (trend) versus trap (mean-reversion) regimes.

A subtle but consequential pitfall arises when one re-scales already normalised
coordinates. Skewness and kurtosis are dimensionless by construction—they are
standardised central moments. If we further divide their displacements by a small
empirical “scale,” the tilde displacement and thus V' can blow up without any
commensurate change in the underlying distribution. This note formalises the issue and

gives a principled fix.
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Relationship to existing work. Hamiltonian formulations of moment
hierarchies exist in plasma physics [3, 4, 5|, where raw moments (density, momentum
density, energy) serve as canonical coordinates. Those approaches derive closed
Hamiltonian systems by expressing higher moments as functions of lower moments,
preserving the Poisson bracket structure of the parent Vlasov or kinetic equation.
However, those formalisms do not encounter the double-normalisation pathology because
all coordinates remain dimensional throughout.

We address a distinct problem: the treatment of pre-normalized shape descriptors
(skewness, kurtosis) that are already dimensionless by construction. This issue arises
whenever one builds diagnostic Hamiltonians from empirical summary statistics rather
than from first-principles kinetic theory. While the plasma literature provides the
mathematical framework (moment closures, Casimir invariants, symplectic structure), the
scaling principle we derive—only dimensional variables require empirical
normalisation—is novel and necessary for statistical diagnostics.

Contributions. (i) We show that re-scaling skewness and kurtosis by vanishing
empirical dispersion inevitably produces divergent potential energy in otherwise linear
Hamiltonians; (ii) we propose a consistent chart and scaling rule separating dimensional
from dimensionless coordinates; (iii) we demonstrate empirically that the corrected
construction yields stable, interpretable diagnostics across FX pairs, with large V' now

corresponding to genuine mean-reversion traps rather than scaling artefacts.
Setup: moments as coordinates

Let x; denote returns over a rolling window. Let (i, 0,7, k) denote the empirical
mean, standard deviation, skewness, and kurtosis (with x the usual kurtosis, so excess is

x — 3). We build a phase coordinate @ = (Q,, Qv, @, Qx) via the chart

Qu = M, Qa = 1Og g, QW =7 Qf-ﬁ = Sign(’f - 3) 1Og(1 + |/€ - 3|> (1)

The chart (1) uses logarithmic coordinates for positivity-constrained quantities
(0 > 0) and a signed-log transform for excess kurtosis to handle both positive and

negative excursions while compressing extreme values. This creates a well-behaved
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Riemannian structure on the phase space. While the specific choice of chart affects the
metric tensor, it is secondary to our main point: whatever chart is chosen, normalised
quantities must not be empirically rescaled.

Let Q* denote an equilibrium (e.g. exponentially weighted baseline). Define tilde
displacements ¢ = § = (Q — Q*)/s, where s = (s, So, S, S,;) are positive scales per
coordinate used only to make dimensional coordinates commensurate.

We adopt a linear, separable Hamiltonian in the tilde chart:
1 _ 1 ki
i i
with k;, = my wf chosen from a characteristic time-scale and optional gentle hierarchies
across coordinates. Masses m; > 0 are estimated from recent motion (quiet coordinates
acquire larger m;).
The double-normalisation pathology

Practitioners often define s; as the recent RMS of Q); — Q7 for all i. This is
harmless for p and o (dimensional), but not for v and x (already normalised).

Motivating example. Consider a quiet market window where skewness
fluctuates in [—0.15,0.10] around v* = 0.0. With naive scaling, s, = RMS(y —~*) ~ 0.08.
A displacement of v = 0.10 yields ¢, = 0.10/0.08 = 1.25.

Now suppose volatility collapses further and s, — 0.02 while skewness remains at
0.10. Then ¢, = 0.10/0.02 = 5.0—a four-fold increase in the normalised coordinate
despite no fundamental change in distribution shape. With k, ~ 1, potential energy

V, x q% explodes from ~ 0.78 to ~ 12.5. This divergence is purely artifactual.

Proposition 1 (Spurious energy blow-up). Consider a coordinate Q that is already
dimensionless and bounded in practice (e.g. ), or the charted Q). If one defines

s = RMS(Q — Q*) on a finite window and constructs ¢ = (Q — Q*)/s, then as the
window variance collapses (s — 0) while (Q — Q*) remains bounded, the potential energy

contribution diverges:

1o, 1 (@-Q)
VQ:§kq :ik 32 8_>0> Q. (3)
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Proof. Immediate, since k > 0 is fixed (linear spring) and the numerator is O(1) while
s? — 0. The divergence is not reflective of the underlying distribution—it is solely

induced by the redundant normalisation. O]

Remark 1. The same mechanism contaminates kinetic energy via ¢ = Q/s if s is
time-varying and tiny. In practice, K and V' can explode by orders of magnitude in quiet

windows despite negligible real changes in shape.

Remark 2 (Other manifestations). Similar issues arise in any context where one mizes
dimensional and dimensionless variables in a phase-space formulation: (i) using
correlation coefficients alongside raw covariances in portfolio optimization; (ii) combining
returns with return-on-equity ratios in factor models; (iii) mizing angles and angular
momenta in rigid body dynamics without proper chart selection. The common thread is
attempting to impose empirical scales on quantities that already possess intrinsic

normalisation.
A principled construction
The resolution is to separate dimensional and dimensionless coordinates.
Chart and scales

Use the chart (1). Choose scales

Sy = max(RMS(QM—Q;), Ao 0, 5), Sy = maX(RMS(QU—Q;), e), sy=1, s,=1,
(4)

with small € > 0 and a volatility-anchored floor A\, € [0.1,0.5]. Then

Q - Q* QU B Q; * *

u? Qo = ——, q’y:Q’Y_QfW QN:QH_QN' (5)

qu =
S Sy

This keeps ¢, and g, in intrinsic units; no double-normalisation occurs.
Springs and masses

Pick a characteristic time-scale 7 (in days), set a base frequency wy = 27 /(c ) for
some ¢ 2 6, clamp wy into a reasonable band, and define k; = m; w? with optional
per-coordinate multipliers w; = woh; (e.g. h = (1, 0.8, 0.6, 0.45)). Estimate m; from
recent motion in the same chart; clamp m; into a modest range to avoid pathologies in

ultra-quiet regimes.
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Dimensionless momenta

Compute finite-difference velocities in chart space and normalise only the

dimensional coordinates:

_dQ,jdt . dQ,/dt 6
W Sy s o s, >
.o dQy o dQy

T 7

Time-decay these to current momenta with a horizon 7, and form K,V, H in the tilde

chart. This keeps the Hamiltonian linear and interpretable.
Discussion

The point is philosophical as much as technical: a phase-space chart must respect
the intrinsic units of its coordinates. Standardised moments already encode their own
scale; forcing an additional data-driven scale manufactures curvature where none exists.
In linear Hamiltonians this appears as spurious energy. The fix restores both
interpretability (virial-like diagnostics) and numerical stability (bounded energy
oscillations under symplectic integration).

Extensive versus intensive quantities. This distinction parallels
thermodynamics: extensive quantities (volume, energy) scale with system size and require
context-dependent units, while intensive quantities (temperature, pressure) have intrinsic
meaning independent of scale. Skewness and kurtosis are intensive-like: they describe
distribution shape, not magnitude. Mean and variance are extensive-like: they describe
location and scale, which lack intrinsic units. Treating shape descriptors as extensive
variables creates the pathology we observe.

Just as one would not “normalise” temperature by its recent RMS to make it
commensurate with volume, one should not normalise skewness by its empirical
dispersion to make it commensurate with mean.

Gauge-theoretic interpretation. In gauge-theoretic language, our fix amounts
to choosing a coordinate chart where some coordinates carry natural units (skewness in
its own dimensionless scale) rather than forcing all coordinates into an artificial common

gauge. This preserves the geometric structure of the phase space.
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The Hamiltonian structure imposes constraints: the symplectic form
w = >, dg; N\ dp; must be preserved under coordinate transformations. When scales s; are
functions of state (as occurs with empirical RMS on short windows), the transformation
is no longer canonical unless carefully constructed. Our prescription—using constant
scales for normalised coordinates—avoids this subtlety.

Relation to information geometry. The issue also connects to information
geometry, where the Fisher metric defines distances on the manifold of probability
distributions. Skewness and kurtosis are coordinates on this manifold that already
incorporate the “natural” metric structure. Re-scaling them by empirical dispersion
distorts this geometry, analogous to using a non-Riemannian connection in a space that
possesses intrinsic curvature.

The idea sits naturally alongside Hamiltonian moment closures (where moments
are canonical variables) and information-geometric HMC (where metrics live on parameter
manifolds), but it is distinct: we focus on empirical moments as state coordinates for

diagnostics, and on the scaling principle that prevents double-normalisation.
Conclusion

When using empirical moments as phase coordinates, only dimensional variables
require empirical scaling. Treat shape descriptors (skewness, kurtosis) with intrinsic
scales in an appropriate chart. This small change prevents artificial energy blow-ups and
yields robust, interpretable diagnostics of market regime in a Hamiltonian framework.

The broader lesson extends beyond finance: in any Hamiltonian diagnostic built
from mized dimensional and dimensionless observables, empirical normalisation must
respect the intrinsic structure of each coordinate. Ignoring this principle creates spurious
dynamics that obscure genuine physical behavior.

Practical recipe.
1. Use the chart (1); compute @Q* as an equilibrium baseline.
2. Set s,, s, from robust dispersion with sensible floors; set s, = 5, = 1.

3. Compute Q in chart space; form ¢ by dividing only where needed.
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4. Choose k; = m;w? in the tilde chart; avoid state-dependent k; for linear diagnostics.
5. Report raw K, V, H and normalised diagnostics Kpomm, Viorm, = K/(K + V).

6. Diagnose the pathology: Compute max;;|Vi(t)|/V where V is the median
potential energy. Values > 100 indicate likely scaling artifacts. If detected, check

whether s, or s,, have become anomalously small (< 0.05).
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