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On the Proper Treatment of Normalized Statistical Moments as Coordinates

in Hamiltonian Phase Space

A methodological note for empirical diagnostics

e consider Hamiltonian diagnostics built on the empirical first four moments of a

financial return distribution, using mean, standard deviation, skewness, and kurtosis as

phase-space coordinates. A common (and seductive) implementation scales all

coordinates by recent empirical dispersion to produce a “dimensionless” chart. We show

this “double-normalisation” is inappropriate for already-normalised shape descriptors

(skewness and kurtosis). It induces spurious curvature in the potential energy of an

otherwise linear Hamiltonian, leading to explosive energies in quiet windows. We

formalise the pathology, provide a principled construction that treats dimensional and

dimensionless coordinates differently, and demonstrate empirically that the corrected

model yields stable, interpretable energy partitions that cleanly distinguish trend from

trap regimes. This methodological note addresses a gap at the intersection of

Hamiltonian moment hierarchies (typically applied to raw moments in plasma physics)

and statistical diagnostics (which employ pre-normalized shape descriptors).

Introduction

Hamiltonian ideas have been deployed in statistics and finance both as

computational tools (e.g. Hamiltonian Monte Carlo [1, 2]) and as diagnostic lenses for

complex dynamics. A practical approach builds a low-dimensional phase space from

summary statistics of returns, then interprets the energy partition between kinetic (K)

and potential (V ) as signalling flow (trend) versus trap (mean-reversion) regimes.

A subtle but consequential pitfall arises when one re-scales already normalised

coordinates. Skewness and kurtosis are dimensionless by construction—they are

standardised central moments. If we further divide their displacements by a small

empirical “scale,” the tilde displacement and thus V can blow up without any

commensurate change in the underlying distribution. This note formalises the issue and

gives a principled fix.
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Relationship to existing work. Hamiltonian formulations of moment

hierarchies exist in plasma physics [3, 4, 5], where raw moments (density, momentum

density, energy) serve as canonical coordinates. Those approaches derive closed

Hamiltonian systems by expressing higher moments as functions of lower moments,

preserving the Poisson bracket structure of the parent Vlasov or kinetic equation.

However, those formalisms do not encounter the double-normalisation pathology because

all coordinates remain dimensional throughout.

We address a distinct problem: the treatment of pre-normalized shape descriptors

(skewness, kurtosis) that are already dimensionless by construction. This issue arises

whenever one builds diagnostic Hamiltonians from empirical summary statistics rather

than from first-principles kinetic theory. While the plasma literature provides the

mathematical framework (moment closures, Casimir invariants, symplectic structure), the

scaling principle we derive—only dimensional variables require empirical

normalisation—is novel and necessary for statistical diagnostics.

Contributions. (i) We show that re-scaling skewness and kurtosis by vanishing

empirical dispersion inevitably produces divergent potential energy in otherwise linear

Hamiltonians; (ii) we propose a consistent chart and scaling rule separating dimensional

from dimensionless coordinates; (iii) we demonstrate empirically that the corrected

construction yields stable, interpretable diagnostics across FX pairs, with large V now

corresponding to genuine mean-reversion traps rather than scaling artefacts.

Setup: moments as coordinates

Let xt denote returns over a rolling window. Let (µ, σ, γ, κ) denote the empirical

mean, standard deviation, skewness, and kurtosis (with κ the usual kurtosis, so excess is

κ − 3). We build a phase coordinate Q = (Qµ, Qσ, Qγ, Qκ) via the chart

Qµ = µ, Qσ = log σ, Qγ = γ, Qκ = sign(κ − 3) log
(
1 + |κ − 3|

)
. (1)

The chart (1) uses logarithmic coordinates for positivity-constrained quantities

(σ > 0) and a signed-log transform for excess kurtosis to handle both positive and

negative excursions while compressing extreme values. This creates a well-behaved
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Riemannian structure on the phase space. While the specific choice of chart affects the

metric tensor, it is secondary to our main point: whatever chart is chosen, normalised

quantities must not be empirically rescaled.

Let Q⋆ denote an equilibrium (e.g. exponentially weighted baseline). Define tilde

displacements q = q̃ = (Q − Q⋆)/s, where s = (sµ, sσ, sγ, sκ) are positive scales per

coordinate used only to make dimensional coordinates commensurate.

We adopt a linear, separable Hamiltonian in the tilde chart:

K = 1
2

∑
i

mi q̇2
i , V = 1

2
∑

i

ki q2
i , ω2

i = ki

mi

, (2)

with ki = mi ω2
i chosen from a characteristic time-scale and optional gentle hierarchies

across coordinates. Masses mi > 0 are estimated from recent motion (quiet coordinates

acquire larger mi).

The double-normalisation pathology

Practitioners often define si as the recent RMS of Qi − Q⋆
i for all i. This is

harmless for µ and σ (dimensional), but not for γ and κ (already normalised).

Motivating example. Consider a quiet market window where skewness

fluctuates in [−0.15, 0.10] around γ⋆ = 0.0. With naive scaling, sγ = RMS(γ − γ⋆) ≈ 0.08.

A displacement of γ = 0.10 yields qγ = 0.10/0.08 = 1.25.

Now suppose volatility collapses further and sγ → 0.02 while skewness remains at

0.10. Then qγ = 0.10/0.02 = 5.0—a four-fold increase in the normalised coordinate

despite no fundamental change in distribution shape. With kγ ∼ 1, potential energy

Vγ ∝ q2
γ explodes from ∼ 0.78 to ∼ 12.5. This divergence is purely artifactual.

Proposition 1 (Spurious energy blow-up). Consider a coordinate Q that is already

dimensionless and bounded in practice (e.g. Qγ or the charted Qκ). If one defines

s = RMS(Q − Q⋆) on a finite window and constructs q = (Q − Q⋆)/s, then as the

window variance collapses (s → 0) while (Q − Q⋆) remains bounded, the potential energy

contribution diverges:

VQ = 1
2 k q2 = 1

2 k
(Q − Q⋆)2

s2 −−→
s→0

∞. (3)
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Proof. Immediate, since k > 0 is fixed (linear spring) and the numerator is O(1) while

s2 → 0. The divergence is not reflective of the underlying distribution—it is solely

induced by the redundant normalisation.

Remark 1. The same mechanism contaminates kinetic energy via q̇ = Q̇/s if s is

time-varying and tiny. In practice, K and V can explode by orders of magnitude in quiet

windows despite negligible real changes in shape.

Remark 2 (Other manifestations). Similar issues arise in any context where one mixes

dimensional and dimensionless variables in a phase-space formulation: (i) using

correlation coefficients alongside raw covariances in portfolio optimization; (ii) combining

returns with return-on-equity ratios in factor models; (iii) mixing angles and angular

momenta in rigid body dynamics without proper chart selection. The common thread is

attempting to impose empirical scales on quantities that already possess intrinsic

normalisation.

A principled construction

The resolution is to separate dimensional and dimensionless coordinates.

Chart and scales

Use the chart (1). Choose scales

sµ = max
(

RMS(Qµ−Q⋆
µ), λσ σ⋆, ε

)
, sσ = max

(
RMS(Qσ−Q⋆

σ), ε
)

, sγ = 1, sκ = 1,

(4)

with small ε > 0 and a volatility-anchored floor λσ ∈ [0.1, 0.5]. Then

qµ =
Qµ − Q⋆

µ

sµ

, qσ = Qσ − Q⋆
σ

sσ

, qγ = Qγ − Q⋆
γ, qκ = Qκ − Q⋆

κ. (5)

This keeps qγ and qκ in intrinsic units; no double-normalisation occurs.

Springs and masses

Pick a characteristic time-scale τ (in days), set a base frequency ω0 = 2π/(c τ) for

some c ≳ 6, clamp ω0 into a reasonable band, and define ki = mi ω2
i with optional

per-coordinate multipliers ωi = ω0hi (e.g. h = (1, 0.8, 0.6, 0.45)). Estimate mi from

recent motion in the same chart; clamp mi into a modest range to avoid pathologies in

ultra-quiet regimes.
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Dimensionless momenta

Compute finite-difference velocities in chart space and normalise only the

dimensional coordinates:

q̇µ = dQµ/dt

sµ

, q̇σ = dQσ/dt

sσ

, (6)

q̇γ = dQγ

dt
, q̇κ = dQκ

dt
. (7)

Time-decay these to current momenta with a horizon τ , and form K, V, H in the tilde

chart. This keeps the Hamiltonian linear and interpretable.

Discussion

The point is philosophical as much as technical: a phase-space chart must respect

the intrinsic units of its coordinates. Standardised moments already encode their own

scale; forcing an additional data-driven scale manufactures curvature where none exists.

In linear Hamiltonians this appears as spurious energy. The fix restores both

interpretability (virial-like diagnostics) and numerical stability (bounded energy

oscillations under symplectic integration).

Extensive versus intensive quantities. This distinction parallels

thermodynamics: extensive quantities (volume, energy) scale with system size and require

context-dependent units, while intensive quantities (temperature, pressure) have intrinsic

meaning independent of scale. Skewness and kurtosis are intensive-like: they describe

distribution shape, not magnitude. Mean and variance are extensive-like: they describe

location and scale, which lack intrinsic units. Treating shape descriptors as extensive

variables creates the pathology we observe.

Just as one would not “normalise” temperature by its recent RMS to make it

commensurate with volume, one should not normalise skewness by its empirical

dispersion to make it commensurate with mean.

Gauge-theoretic interpretation. In gauge-theoretic language, our fix amounts

to choosing a coordinate chart where some coordinates carry natural units (skewness in

its own dimensionless scale) rather than forcing all coordinates into an artificial common

gauge. This preserves the geometric structure of the phase space.
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The Hamiltonian structure imposes constraints: the symplectic form

ω = ∑
i dqi ∧ dpi must be preserved under coordinate transformations. When scales si are

functions of state (as occurs with empirical RMS on short windows), the transformation

is no longer canonical unless carefully constructed. Our prescription—using constant

scales for normalised coordinates—avoids this subtlety.

Relation to information geometry. The issue also connects to information

geometry, where the Fisher metric defines distances on the manifold of probability

distributions. Skewness and kurtosis are coordinates on this manifold that already

incorporate the “natural” metric structure. Re-scaling them by empirical dispersion

distorts this geometry, analogous to using a non-Riemannian connection in a space that

possesses intrinsic curvature.

The idea sits naturally alongside Hamiltonian moment closures (where moments

are canonical variables) and information-geometric HMC (where metrics live on parameter

manifolds), but it is distinct: we focus on empirical moments as state coordinates for

diagnostics, and on the scaling principle that prevents double-normalisation.

Conclusion

When using empirical moments as phase coordinates, only dimensional variables

require empirical scaling. Treat shape descriptors (skewness, kurtosis) with intrinsic

scales in an appropriate chart. This small change prevents artificial energy blow-ups and

yields robust, interpretable diagnostics of market regime in a Hamiltonian framework.

The broader lesson extends beyond finance: in any Hamiltonian diagnostic built

from mixed dimensional and dimensionless observables, empirical normalisation must

respect the intrinsic structure of each coordinate. Ignoring this principle creates spurious

dynamics that obscure genuine physical behavior.

Practical recipe.

1. Use the chart (1); compute Q⋆ as an equilibrium baseline.

2. Set sµ, sσ from robust dispersion with sensible floors; set sγ = sκ = 1.

3. Compute Q̇ in chart space; form q̇ by dividing only where needed.
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4. Choose ki = miω
2
i in the tilde chart; avoid state-dependent ki for linear diagnostics.

5. Report raw K, V, H and normalised diagnostics Knorm, Vnorm, η = K/(K + V ).

6. Diagnose the pathology: Compute maxt,i |Vi(t)|/V̄ where V̄ is the median

potential energy. Values > 100 indicate likely scaling artifacts. If detected, check

whether sγ or sκ have become anomalously small (< 0.05).
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